Answer:
Option A
Explanation:
Given AQ = AR and $\angle A = 60^{0}$
$\therefore \angle AQR =\angle ARQ = 60^{0}$
$\therefore r_{1} = r_{2} = 30^{o}$
Applying Snell's law on face AB
$\sin i_{1} = \mu\sin r_{1}$
$\sin i_{1} = \sqrt{3}\sin 30^{o} = \sqrt{3}\times\frac{1}{2}$
= $\frac{\sqrt{3}}{2}$
$\therefore i_{1} = 60^{o} = i_{2}$
In a prism, deviation
$\delta =i_{1} + i_{2}-A$ = 60º + 60º - 60º = 60º